contributor author | Yajun Fan | |
contributor author | Youneng Wang | |
contributor author | Sinisa Vukelic | |
contributor author | Y. Lawrence Yao | |
date accessioned | 2017-05-09T00:24:48Z | |
date available | 2017-05-09T00:24:48Z | |
date copyright | April, 2007 | |
date issued | 2007 | |
identifier issn | 1087-1357 | |
identifier other | JMSEFK-27966#256_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/136322 | |
description abstract | Laser shock peening (LSP) is an innovative process which imparts compressive residual stresses in the processed surface of metallic parts to significantly improve fatigue life and fatigue strength of this part. In opposing dual sided LSP, the workpiece can be simultaneously irradiated or irradiated with different time lags to create different surface residual stress patterns by virtue of the interaction between the opposing shock waves. In this work, a finite element model, in which the hydrodynamic behavior of the material and the deviatoric behavior including work hardening and strain rate effects were considered, was applied to predict residual stress distributions in the processed surface induced under various conditions of the opposing dual sided microscale laser shock peening. Thus the shock waves from each surface will interact in different ways through the thickness resulting in more complex residual stress profiles. Additionally, when treating a thin section, opposing dual sided peening is expected to avoid harmful effects such as spalling and fracture because the pressures on the opposite surfaces of the target balance one another and prohibit excessive deformation of the target. In order to better understand the wave–wave interactions under different conditions, the residual stress profiles corresponding to various workpiece thicknesses and various irradiation times were evaluated. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Numerical Investigation of Opposing Dual Sided Microscale Laser Shock Peening | |
type | Journal Paper | |
journal volume | 129 | |
journal issue | 2 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.2540771 | |
journal fristpage | 256 | |
journal lastpage | 264 | |
identifier eissn | 1528-8935 | |
keywords | Pressure | |
keywords | Lasers | |
keywords | Shock waves | |
keywords | Irradiation (Radiation exposure) | |
keywords | Stress | |
keywords | Waves | |
keywords | Shock (Mechanics) | |
keywords | Microscale devices | |
keywords | Laser hardening | |
keywords | Thickness AND Residual stresses | |
tree | Journal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 002 | |
contenttype | Fulltext | |