Show simple item record

contributor authorRong Fung Huang
contributor authorShyy Woei Chang
contributor authorKun-Hung Chen
date accessioned2017-05-09T00:24:30Z
date available2017-05-09T00:24:30Z
date copyrightDecember, 2007
date issued2007
identifier issn0022-1481
identifier otherJHTRAO-27828#1732_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136165
description abstractThe flow characteristics and the heat transfer properties of the rectangular channels with staggered transverse ribs on two opposite walls are experimentally studied. The rib height to channel height ratio ranges from 0.15 to 0.61 (rib height to channel hydraulic diameter ratio from 0.09 to 0.38). The pitch to rib height ratio covers from 2.5 to 26. The aspect ratio of the rectangular channel is 4. The flow characteristics are studied in a water channel, while the heat transfer experiments are performed in a wind tunnel. Particle image velocimetry (PIV) is employed to obtain the quantitative flow field characteristics. Fine-wire thermocouples imbedded near the inner surface of the bottom channel wall are used to measure the temperature distributions of the wall and to calculate the local and average Nusselt numbers. Using the PIV measured streamline patterns, various characteristic flow modes, thru flow, oscillating flow, and cell flow, are identified in different regimes of the domain of the rib height to channel height ratio and pitch to rib height ratio. The vorticity, turbulence intensity, and wall shear stress of the cell flow are found to be particularly larger than those of other characteristic flow modes. The measured local and average Nusselt numbers of the cell flow are also particularly higher than those of other characteristic flow modes. The distinctive flow properties are responsible for the drastic increase of the heat transfer due to the enhancement of the momentum, heat, and mass exchanges within the flow field induced by the large values of the vorticity and turbulence intensity. Although the thru flow mode is conventionally used in the ribbed channel for industrial application, the cell flow could become the choice if the heat transfer rate, instead of the pressure loss, is the primary concern.
publisherThe American Society of Mechanical Engineers (ASME)
titleFlow and Heat Transfer Characteristics in Rectangular Channels With Staggered Transverse Ribs on Two Opposite Walls
typeJournal Paper
journal volume129
journal issue12
journal titleJournal of Heat Transfer
identifier doi10.1115/1.2768101
journal fristpage1732
journal lastpage1736
identifier eissn1528-8943
keywordsFlow (Dynamics)
keywordsHeat transfer
keywordsChannels (Hydraulic engineering)
keywordsTurbulence
keywordsVorticity AND Particulate matter
treeJournal of Heat Transfer:;2007:;volume( 129 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record