Show simple item record

contributor authorLouis G. Hector
contributor authorYeh-Hung Lai
contributor authorWei Tong
contributor authorMichael J. Lukitsch
date accessioned2017-05-09T00:24:27Z
date available2017-05-09T00:24:27Z
date copyrightFebruary, 2007
date issued2007
identifier issn2381-6872
identifier otherJFCSAU-28928#19_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136139
description abstractA digital image correlation technique was used to measure drying-induced strains in perfluorosulfonic acid (PFSA) membrane and membrane electrode assembly (MEA) materials which are key components of fuel cells. Circular coupons of each material were constrained in a stainless-steel drum fixture and hydration was achieved by immersing the drum/coupon assembly in 80°C water for 5min. During air drying at 25°C and 50% relative humidity, a series of 1280×960 digital images of each coupon surface was recorded with a digital camera and image acquisition system for drying periods up to 26h. Cumulative correlation of an initial image recorded prior to hot water immersion and the final image at the end of drying produced in-plane strain contour maps. Incremental correlation was employed to track strain evolution at the coupon centers and at peripheral points. During the earliest drying stages, where both materials exhibited viscoelastic behavior, peak radial strains of 9.50% and 2.50% were measured in the PFSA membrane and MEA materials, respectively. At longer drying times, peak radial strains reached constant values of 5.70% and 1.25% in the PFSA membrane and MEA materials, respectively. Strain accumulation in the MEA tends to be less uniform than that in the membrane, and corresponding peak strain values in the MEA tend to be less than those in the membrane independent of drying duration. Reinforcement from the electrode layers lowers strain accumulation in the MEA, but it does not preclude crack nucleation in these layers as drying proceeds.
publisherThe American Society of Mechanical Engineers (ASME)
titleStrain Accumulation in Polymer Electrolyte Membrane and Membrane Electrode Assembly Materials During a Single Hydration/Dehydration Cycle
typeJournal Paper
journal volume4
journal issue1
journal titleJournal of Fuel Cell Science and Technology
identifier doi10.1115/1.2393302
journal fristpage19
journal lastpage28
identifier eissn2381-6910
keywordsDrying
keywordsManufacturing
keywordsElectrodes
keywordsMembranes
keywordsProton exchange membranes
keywordsJigs and fixtures AND Cycles
treeJournal of Fuel Cell Science and Technology:;2007:;volume( 004 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record