A Generalized Neural Network Model of Refrigerant Mass Flow Through Adiabatic Capillary Tubes and Short Tube Orifices
contributor author | Ling-Xiao Zhao | |
contributor author | Chun-Lu Zhang | |
contributor author | Liang-Liang Shao | |
contributor author | Liang Yang | |
date accessioned | 2017-05-09T00:23:59Z | |
date available | 2017-05-09T00:23:59Z | |
date copyright | December, 2007 | |
date issued | 2007 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27284#1559_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/135893 | |
description abstract | Adiabatic capillary tubes and short tube orifices are widely used as expansive devices in refrigeration, residential air conditioners, and heat pumps. In this paper, a generalized neural network has been developed to predict the mass flow rate through adiabatic capillary tubes and short tube orifices. The input/output parameters of the neural network are dimensionless and derived from the homogeneous equilibrium flow model. Three-layer backpropagation (BP) neural network is selected as a universal function approximator. Log sigmoid and pure linear transfer functions are used in the hidden layer and the output layer, respectively. The experimental data of R12, R22, R134a, R404A, R407C, R410A, and R600a from the open literature covering capillary and short tube geometries, subcooled and two-phase inlet conditions, are collected for the BP network training and testing. Compared with experimental data, the overall average and standard deviations of the proposed neural network are 0.75% and 8.27% of the measured mass flow rates, respectively. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Generalized Neural Network Model of Refrigerant Mass Flow Through Adiabatic Capillary Tubes and Short Tube Orifices | |
type | Journal Paper | |
journal volume | 129 | |
journal issue | 12 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.2801352 | |
journal fristpage | 1559 | |
journal lastpage | 1564 | |
identifier eissn | 1528-901X | |
keywords | Flow (Dynamics) | |
keywords | Orifices | |
keywords | Artificial neural networks AND Refrigerants | |
tree | Journal of Fluids Engineering:;2007:;volume( 129 ):;issue: 012 | |
contenttype | Fulltext |