Show simple item record

contributor authorJimmy C. K. Tong
contributor authorJohn P. Abraham
contributor authorEphraim M. Sparrow
date accessioned2017-05-09T00:22:51Z
date available2017-05-09T00:22:51Z
date copyrightApril, 2007
date issued2007
identifier issn0148-0731
identifier otherJBENDY-26680#187_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135280
description abstractWhen a stent is implanted in a blocked ureter, the urine passing from the kidney to the bladder must traverse a very complicated flow path. That path consists of two parallel passages, one of which is the bore of the stent and the other is the annular space between the external surface of the stent and the inner wall of the ureter. The flow path is further complicated by the presence of numerous pass-through holes that are deployed along the length of the stent. These holes allow urine to pass between the annulus and the bore. Further complexity in the pattern of the urine flow occurs because the coiled “pig tails,” which hold the stent in place, contain multiple ports for fluid ingress and egress. The fluid flow in a stented ureter has been quantitatively analyzed here for the first time using numerical simulation. The numerical solutions obtained here fully reveal the details of the urine flow throughout the entire stented ureter. It was found that in the absence of blockages, most of the pass-through holes are inactive. Furthermore, only the port in each coiled pig tail that is nearest the stent proper is actively involved in the urine flow. Only in the presence of blockages, which may occur due to encrustation or biofouling, are the numerous pass-through holes activated. The numerical simulations are able to track the urine flow through the pass-through holes as well as adjacent to the blockages. The simulations are also able to provide highly accurate results for the kidney-to-bladder urine flow rate. The simulation method presented here constitutes a powerful new tool for rational design of ureteral stents in the future.
publisherThe American Society of Mechanical Engineers (ASME)
titleNumerical Simulation of the Urine Flow in a Stented Ureter
typeJournal Paper
journal volume129
journal issue2
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.2472381
journal fristpage187
journal lastpage192
identifier eissn1528-8951
keywordsFlow (Dynamics)
keywordsComputer simulation
keywordsAnnulus
keywordsstents AND Fluid dynamics
treeJournal of Biomechanical Engineering:;2007:;volume( 129 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record