Show simple item record

contributor authorDong-Ho Rhee
contributor authorHyung Hee Cho
date accessioned2017-05-09T00:22:01Z
date available2017-05-09T00:22:01Z
date copyrightJanuary, 2006
date issued2006
identifier issn0889-504X
identifier otherJOTUEI-28726#96_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134872
description abstractThe present study focuses on local heat/mass transfer characteristics on the near-tip region of a rotating blade. To investigate the local heat/mass transfer on the near-tip surface of the rotating turbine blade, detailed measurements of time-averaged mass transfer coefficients on the blade surfaces were conducted using a naphthalene sublimation technique. A low speed wind tunnel with a single stage annular turbine cascade was used. The turbine stage is composed of sixteen guide plates and blades with spacing of 34 mm, and the chord length of the blade is 150 mm. The mean tip clearance is about 2.5% of the blade chord. The tested Reynolds number based on inlet flow velocity and blade chord is 1.5×105 and the rotational speed of blade is 255.8 rpm for the design condition. The result at the design condition was compared with the results for the stationary blade to clarify the rotational effect, and the effects of incoming flow incidence angle were examined for incidence angles ranging from −15 to +7deg. The off-design test condition is obtained by changing the rotational speed maintaining a fixed incoming flow velocity. Complex heat transfer characteristics are observed on the blade surface due to the complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. The blade rotation causes an increase of the incoming flow turbulence intensity and a reduction of the tip gap flow. At off-design conditions, the heat transfer on the turbine rotor changes significantly due to the flow acceleration/deceleration and the incoming flow angle variation.
publisherThe American Society of Mechanical Engineers (ASME)
titleLocal Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in Low-Speed Annular Cascade—Part I: Near-Tip Surface
typeJournal Paper
journal volume128
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.2098756
journal fristpage96
journal lastpage109
identifier eissn1528-8900
keywordsPressure
keywordsFlow (Dynamics)
keywordsHeat
keywordsMass transfer
keywordsHeat transfer
keywordsBlades
keywordsRotating blades
keywordsSuction
keywordsTurbulence
keywordsCascades (Fluid dynamics) AND Leakage flows
treeJournal of Turbomachinery:;2006:;volume( 128 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record