Show simple item record

contributor authorW. Colban
contributor authorM. Haendler
contributor authorA. Gratton
contributor authorK. A. Thole
date accessioned2017-05-09T00:22:01Z
date available2017-05-09T00:22:01Z
date copyrightJanuary, 2006
date issued2006
identifier issn0889-504X
identifier otherJOTUEI-28726#53_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134867
description abstractIn a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single-row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single-row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.
publisherThe American Society of Mechanical Engineers (ASME)
titleHeat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
typeJournal Paper
journal volume128
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.2098789
journal fristpage53
journal lastpage61
identifier eissn1528-8900
keywordsPressure
keywordsHeat transfer
keywordsCooling
keywordsMeasurement
keywordsSuction AND Boundary layers
treeJournal of Turbomachinery:;2006:;volume( 128 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record