Show simple item record

contributor authorM. B. Marshall
contributor authorU. Olofsson
contributor authorS. Björklund
contributor authorR. Lewis
contributor authorR. S. Dwyer-Joyce
date accessioned2017-05-09T00:21:40Z
date available2017-05-09T00:21:40Z
date copyrightJuly, 2006
date issued2006
identifier issn0742-4787
identifier otherJOTRE9-28741#493_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134698
description abstractThe contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Characterization of Wheel-Rail Contact Patch Evolution
typeJournal Paper
journal volume128
journal issue3
journal titleJournal of Tribology
identifier doi10.1115/1.2197523
journal fristpage493
journal lastpage504
identifier eissn1528-8897
keywordsPressure
keywordsSurface roughness
keywordsRails
keywordsWheels
keywordsStress
keywordsSands AND Stiffness
treeJournal of Tribology:;2006:;volume( 128 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record