contributor author | Y. Zhang | |
contributor author | A. Mawardi | |
contributor author | R. Pitchumani | |
date accessioned | 2017-05-09T00:20:28Z | |
date available | 2017-05-09T00:20:28Z | |
date copyright | November, 2006 | |
date issued | 2006 | |
identifier issn | 2381-6872 | |
identifier other | JFCSAU-28927#464_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/134032 | |
description abstract | During the operation of a proton exchange membrane (PEM) fuel cell, significant variation of the local current density could exist across the cell causing sharp temperature and stress gradients in certain points, and affecting the water management, all of which severely impact the cell performance and reliability. The variation of local current density is a critical issue in the performance of PEM fuel cell, and is influenced by the operating conditions. This article presents a model-assisted parametric design with the objective of determining the operating conditions which maximize the fuel cell performance while maintaining a level of uniformity in the current density distribution. A comprehensive two-dimensional model is adopted to simulate the species transport and electrochemical phenomena in a PEM fuel cell. Numerical simulations are performed for over a wide range of operating conditions to analyze the effects of various operating parameters on the variation of local current density of the fuel cell, and to develop design windows which serve as guideline in the design for maximum power density, minimum reactant stoichiometry, and uniform current density distribution. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effects of Operating Parameters on the Current Density Distribution in Proton Exchange Membrane Fuel Cells | |
type | Journal Paper | |
journal volume | 3 | |
journal issue | 4 | |
journal title | Journal of Fuel Cell Science and Technology | |
identifier doi | 10.1115/1.2349531 | |
journal fristpage | 464 | |
journal lastpage | 476 | |
identifier eissn | 2381-6910 | |
keywords | Temperature | |
keywords | Anodes | |
keywords | Design | |
keywords | Fuel cells | |
keywords | Current density | |
keywords | Proton exchange membrane fuel cells | |
keywords | Density | |
keywords | Membranes | |
keywords | Electric potential | |
keywords | Channels (Hydraulic engineering) | |
keywords | Catalysts | |
keywords | Stoichiometry | |
keywords | Computer simulation AND Equations | |
tree | Journal of Fuel Cell Science and Technology:;2006:;volume( 003 ):;issue: 004 | |
contenttype | Fulltext | |