contributor author | W. Yang | |
contributor author | K. S. Chian | |
contributor author | C. K. Chong | |
contributor author | T. C. Fung | |
date accessioned | 2017-05-09T00:18:47Z | |
date available | 2017-05-09T00:18:47Z | |
date copyright | December, 2006 | |
date issued | 2006 | |
identifier issn | 0148-0731 | |
identifier other | JBENDY-26642#909_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/133136 | |
description abstract | The time-dependent mechanical properties of the porcine esophagus were investigated experimentally and theoretically. It was hypothesized that the viscoelasticity was quasilinear, i.e., the time and strain effects were independent. In order to verify the separability of time and strain effects, the stress-relaxation test was conducted at various strains and the data were fitted with the Fung’s quasilinear viscoelastic (QLV) model. By using the material parameters obtained from the stress relaxation test, the cyclic peak stress and hysteresis were predicted. Results showed that the stress relaxed by 20–30% of the peak stress within the first 10s and stabilized at ∼50% at the time of 300s. The relative stress relaxation R2 (i.e., the difference of stress at a particular time to the final equilibrium stress normalized by the total difference of the peak and final stress) was not different significantly for various strains. It was also found that, by using the stress-time data during both the ramp and relaxation phases, the correlation between parameters was substantially reduced. The model could also predict the cyclic peak stress and hysteresis except for the underestimate of valley stress. We conclude that the QLV model could be used as the material characterization of the esophageal tissue. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Viscoelasticity of Esophageal Tissue and Application of a QLV Model | |
type | Journal Paper | |
journal volume | 128 | |
journal issue | 6 | |
journal title | Journal of Biomechanical Engineering | |
identifier doi | 10.1115/1.2372473 | |
journal fristpage | 909 | |
journal lastpage | 916 | |
identifier eissn | 1528-8951 | |
keywords | Relaxation (Physics) | |
keywords | Stress | |
keywords | Biological tissues AND Viscoelasticity | |
tree | Journal of Biomechanical Engineering:;2006:;volume( 128 ):;issue: 006 | |
contenttype | Fulltext | |