| contributor author | Cengiz Camci | |
| contributor author | Professor of Aerospace Engineering | |
| contributor author | Debashis Dey | |
| contributor author | Research Assistant | |
| contributor author | Levent Kavurmacioglu | |
| contributor author | Visiting Professor | |
| date accessioned | 2017-05-09T00:18:14Z | |
| date available | 2017-05-09T00:18:14Z | |
| date copyright | January, 2005 | |
| date issued | 2005 | |
| identifier issn | 0889-504X | |
| identifier other | JOTUEI-28717#14_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/132830 | |
| description abstract | This paper deals with an experimental investigation of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims are investigated separately on the pressure side and on the suction side in the “Axial Flow Turbine Research Facility” (AFTRF) of the Pennsylvania State University. The streamwise length of these “partial squealer tips” and their chordwise position are varied to find an optimal aerodynamic tip configuration. The optimal configuration in this cold turbine study is defined as the one that is minimizing the stage exit total pressure defect in the tip vortex dominated zone. A new “channel arrangement” diverting some of the leakage flow into the trailing edge zone is also studied. Current results indicate that the use of “partial squealer rims” in axial flow turbines can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction side partial squealers are aerodynamically superior to the pressure side squealers and the channel arrangement. The suction side partial squealers are capable of reducing the stage exit total pressure defect associated with the tip leakage flow to a significant degree. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage | |
| type | Journal Paper | |
| journal volume | 127 | |
| journal issue | 1 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.1791279 | |
| journal fristpage | 14 | |
| journal lastpage | 24 | |
| identifier eissn | 1528-8900 | |
| keywords | Pressure | |
| keywords | Flow (Dynamics) | |
| keywords | Suction | |
| keywords | Rotors | |
| keywords | Turbines | |
| keywords | Blades | |
| keywords | Leakage flows | |
| keywords | Leakage | |
| keywords | Axial flow | |
| keywords | Wake turbulence | |
| keywords | Vortices AND Clearances (Engineering) | |
| tree | Journal of Turbomachinery:;2005:;volume( 127 ):;issue: 001 | |
| contenttype | Fulltext | |