contributor author | Michael Gritsch | |
contributor author | Will Colban | |
contributor author | Heinz Schär | |
contributor author | Klaus Döbbeling | |
date accessioned | 2017-05-09T00:18:05Z | |
date available | 2017-05-09T00:18:05Z | |
date copyright | October, 2005 | |
date issued | 2005 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28723#718_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/132771 | |
description abstract | This study evaluates the impact of typical cooling hole shape variations on the thermal performance of fan-shaped film holes. A comprehensive set of experimental test cases featuring 16 different film-cooling configurations with different hole shapes have been investigated. The shape variations investigated include hole inlet-to-outlet area ratio, hole coverage ratio, hole pitch ratio, hole length, and hole orientation (compound) angle. Flow conditions applied cover a wide range of film blowing ratios M=0.5 to 2.5 at an engine-representative density ratio DR=1.7. An infrared thermography data acquisition system is used for highly accurate and spatially resolved surface temperature mappings. Accurate local temperature data are achieved by an in situ calibration procedure with the help of thermocouples embedded in the test plate. Detailed film-cooling effectiveness distributions and discharge coefficients are used for evaluating the thermal performance of a row of fan-shaped film holes. An extensive variation of the main geometrical parameters describing a fan-shaped film-cooling hole is done to cover a wide range of typical film-cooling applications in current gas turbine engines. Within the range investigated, laterally averaged film-cooling effectiveness was found to show only limited sensitivity from variations of the hole geometry parameters. This offers the potential to tailor the hole geometry according to needs beyond pure cooling performance, e.g., manufacturing facilitations. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes | |
type | Journal Paper | |
journal volume | 127 | |
journal issue | 4 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2019315 | |
journal fristpage | 718 | |
journal lastpage | 725 | |
identifier eissn | 1528-8900 | |
keywords | Flow (Dynamics) | |
keywords | Cooling | |
keywords | Geometry | |
keywords | Shapes AND Coolants | |
tree | Journal of Turbomachinery:;2005:;volume( 127 ):;issue: 004 | |
contenttype | Fulltext | |