Show simple item record

contributor authorWei Che
contributor authorAshraf Bastawros
contributor authorYongjin Guo
contributor authorAbhijit Chandra
date accessioned2017-05-09T00:16:54Z
date available2017-05-09T00:16:54Z
date copyrightAugust, 2005
date issued2005
identifier issn1087-1357
identifier otherJMSEFK-27879#545_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/132164
description abstractA scratch intersection based material removal mechanism for CMP processes is proposed in this paper. The experimentally observed deformation pattern by SEM and the trends of the measured force profiles (Che et al. , 2003) reveal that, for an isolated shallow scratch, the material is mainly plowed sideway along the track of the abrasive particle with no net material removal. However, it is observed that material is detached close to the intersection zone of two scratches. Motivated by this observation, it is speculated that the deformation mechanism changes from ploughing mode to shear-segmentation mode as the abrasive particle approaches the intersection of two scratches under small indentation depth for ductile metals. The proposed mechanistic material removal rate (MRR) model yields Preston constant similar to those observed experimentally for CMP processes. The proposed model also reveals that the nature of the slurry-pad interaction mechanism, and its associated force partitioning mechanism, is important for determining the variation of MRR with particle size and concentration. It is observed that under relatively soft pads, small particles and low particle concentration, the pad undergoes local deformation, yielding an increased MRR with increasing particle size and concentration. At the other extreme, the intact walls of the surface cells and the connecting cell walls between the surface pores deform globally, resembling a beam or a plate, and a decreasing trend in MRR is observed with increasing particle size and concentration. The predicted MRR trends are compared to existing experimental observations.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Scratch Intersection Model of Material Removal During Chemical Mechanical Planarization (CMP)
typeJournal Paper
journal volume127
journal issue3
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.1949616
journal fristpage545
journal lastpage554
identifier eissn1528-8935
keywordsPressure
keywordsDeformation
keywordsParticulate matter
keywordsIntersections
keywordsParticle size
keywordsMechanisms
keywordsForce AND Semiconductor wafers
treeJournal of Manufacturing Science and Engineering:;2005:;volume( 127 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record