Show simple item record

contributor authorJason P. Halloran
contributor authorAnthony J. Petrella
contributor authorPaul J. Rullkoetter
contributor authorSarah K. Easley
date accessioned2017-05-09T00:15:17Z
date available2017-05-09T00:15:17Z
date copyrightOctober, 2005
date issued2005
identifier issn0148-0731
identifier otherJBENDY-26537#813_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131343
description abstractRigid body total knee replacement (TKR) models with tibiofemoral contact based on elastic foundation (EF) theory utilize simple contact pressure-surface overclosure relationships to estimate joint mechanics, and require significantly less computational time than corresponding deformable finite element (FE) methods. However, potential differences in predicted kinematics between these representations are currently not well understood, and it is unclear if the estimates of contact area and pressure are acceptable. Therefore, the objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs. Linear and nonlinear contact pressure-surface overclosure relationships based on polyethylene material properties were developed using EF theory. All other variables being equal, rigid body FE models accurately estimated kinematics predicted by fully deformable FE models and required only 2% of the analysis time. As expected, the linear EF contact model sufficiently approximated trends for peak contact pressures, but overestimated the deformable results by up to 30%. The nonlinear EF contact model more accurately reproduced trends and magnitudes of the deformable analysis, with maximum differences of approximately 15% at the peak pressures during the gait cycle. All contact area predictions agreed in trend and magnitude. Using rigid models, edge-loading conditions resulted in substantial overestimation of peak pressure. Optimal nonlinear EF contact relationships were developed for specific TKR designs for use in parametric or repetitive analyses where computational time is paramount. The explicit FE analysis method utilized here provides a unique approach in that both rigid and deformable analyses can be run from the same input file, thus enabling simple selection of the most appropriate representation for the analysis of interest.
publisherThe American Society of Mechanical Engineers (ASME)
titleComparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
typeJournal Paper
journal volume127
journal issue5
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.1992522
journal fristpage813
journal lastpage818
identifier eissn1528-8951
keywordsStress
keywordsDesign
keywordsEngineering simulation
keywordsFinite element analysis
keywordsCycles
keywordsKinematics
keywordsPressure
keywordsKnee joint prostheses
keywordsFinite element model
keywordsKnee AND Wear
treeJournal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record