| description abstract | The systematic study of kinematics can be traced to the writings of the ancient Greeks, Egyptians, Romans and Persians as far back as 500 B.C. For many centuries kinematics (along with geometry) was regarded as one of the basic sciences that explained observed physical phenomena and was used to engineer machines. Though it may seem unlikely, kinematics (in particular, robot kinematics) can significantly contribute to our understanding of biological systems and their functions at the microscopic level and to the engineering of new diagnostic tools, treatments, and drugs for a variety of diseases. Given the vast body of knowledge in theoretical, applied, and analytical kinematics and robotics, the conspicuous absence of the kinematics community from current molecular science research relating to the prediction of protein folding, protein docking, protein engineering, and drug design seems puzzling. In this paper, we will discuss the potential contributions of kinematics to some current challenges in biotechnology. | |