contributor author | Michael P. Vogler | |
contributor author | Richard E. DeVor | |
contributor author | Shiv G. Kapoor | |
date accessioned | 2017-05-09T00:13:33Z | |
date available | 2017-05-09T00:13:33Z | |
date copyright | November, 2004 | |
date issued | 2004 | |
identifier issn | 1087-1357 | |
identifier other | JMSEFK-27832#685_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/130331 | |
description abstract | This paper examines the surface generation process in the micro-endmilling of both single-phase and multiphase workpiece materials. We used 508 μm dia endmills with edge radii of 2 and 5 μm to machine slots in ferrite, pearlite, and two ductile iron materials at feed rates ranging from 0.25 to 3.0 μm/flute. A surface generation model to predict the surface roughness for the slot floor centerline is then developed based on the minimum chip thickness concept. The minimum chip thickness values were found through finite element simulations for the ferrite and pearlite materials. The model is shown to accurately predict the surface roughness for single-phase materials, viz., ferrite and pearlite. Two phenomena were found to combine to generate an optimal feed rate for the surface generation of single-phase materials: (i) the geometric effect of the tool and process geometry and (ii) the minimum chip thickness effect. The surface roughness measurements for the ductile iron workpieces indicate that the micromilling surface generation process for multiphase workpiece materials is also affected by the interrupted chip-formation process as the cutting edge moves between phases resulting in burrs at the phase boundaries and the associated increases in surface roughness. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part I: Surface Generation | |
type | Journal Paper | |
journal volume | 126 | |
journal issue | 4 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.1813470 | |
journal fristpage | 685 | |
journal lastpage | 694 | |
identifier eissn | 1528-8935 | |
keywords | Nodular iron | |
keywords | Surface roughness | |
keywords | Ferrites (Magnetic materials) | |
keywords | Modeling | |
keywords | Cutting | |
keywords | Geometry | |
keywords | Thickness | |
keywords | Machining | |
keywords | Engineering simulation AND Measurement | |
tree | Journal of Manufacturing Science and Engineering:;2004:;volume( 126 ):;issue: 004 | |
contenttype | Fulltext | |