| description abstract | The micro-elastohydrodynamic lubrication of a single transverse ridge is revisited using an experimental technique, which combines an optical interferometry technique and a high-speed color video camera. The purpose of this study is to augment prior experimental analyses, by providing a complete and detailed history of the ridge associated with changes in film thickness as it passes through a high-pressure conjunction. An enhanced experimental procedure has been developed to enable an automatic analysis of the interferograms. In particular, the methodology allows abrupt changes in film thickness and rapid variations of interference orders to be taken into account. The observations presented in this paper exhibit interesting and fascinating features that have not been previously reported. In particular, it is observed that under rolling/sliding conditions the ridge undergoes further deformations as it proceeds to the exit to the contact. In addition, there appears to be an important contribution of pressure flow to the transport of lubricant and, contrary to current understanding, entrapped lubricant is seen to accompany the ridge as it passes through the contact, therefore appearing not to move at the entraining velocity. | |