Show simple item record

contributor authorJaan-Rong Kang
contributor authorChun-Lung Huang
contributor authorCheng-Kuo Sung
contributor authorChang-Po Chao
date accessioned2017-05-09T00:06:22Z
date available2017-05-09T00:06:22Z
date copyrightOctober, 2001
date issued2001
identifier issn1048-9002
identifier otherJVACEK-28859#456_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126104
description abstractThis study is devoted to evaluate the performance of a ball-type balancer system that is installed in high-speed optical disk drives. The ball-type balancer system, composed of a circular runway and free-moving balls inside, is designed for reducing radial vibrations induced by the inherent unbalance of the rotating system. A balancer system equipped with a pair of balls is considered in this study for its capability to reach possible near-elimination of radial vibrations as opposed to the serious sizing problem of a single balancing-ball system. A mathematical model is first established to describe the dynamics of the balls and rotor system. Utilizing the method of multiple scales and assuming the smallness of radial vibrations, the system dynamics on the slow time scale is represented by eight first-order autonomous differential equations, which accommodate the radial vibratory motions and ball behaviors. The steady-state solutions of these slow equations are then solved and their stability analyzed to predict settling ball positions. The residual vibrations are computed to evaluate the performance of the balancer system and then the design guidelines are distilled for engineers to design the balancer system.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Dynamics of a Ball-Type Balancer System Equipped with a Pair of Free-Moving Balancing Masses
typeJournal Paper
journal volume123
journal issue4
journal titleJournal of Vibration and Acoustics
identifier doi10.1115/1.1385203
journal fristpage456
journal lastpage465
identifier eissn1528-8927
keywordsDynamics (Mechanics)
keywordsStability
keywordsRotors
keywordsVibration
keywordsSteady state
keywordsMotion
keywordsDisks AND Design
treeJournal of Vibration and Acoustics:;2001:;volume( 123 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record