Show simple item record

contributor authorM. Inoue
contributor authorM. Kuroumaru
contributor authorT. Tanino
contributor authorS. Yoshida
contributor authorM. Furukawa
date accessioned2017-05-09T00:06:19Z
date available2017-05-09T00:06:19Z
date copyrightJanuary, 2001
date issued2001
identifier issn0889-504X
identifier otherJOTUEI-28686#24_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126075
description abstractIn a low-speed compressor test rig at Kyushu University, multiple short length-scale stall cells appeared under a mild stall condition and turned into a long length-scale cell under a deep stall condition. Then, for the two types of stall cell, the pressure distribution on the casing wall and the velocity distributions upstream and downstream of the rotor have been measured by high-response pressure transducers and a slanted hot-wire, respectively. The time-dependent ensemble-averages of these distributions have been obtained phase-locked to both the rotor and the stall cell rotation using a “double phase-locked averaging technique” developed by the authors. The structures of the two stall cells are compared: The short length-scale stall cell is characterized by a concentrated vortex spanning from the casing wall ahead of the rotor to the blade suction surface. In the long length-scale stall cell, the separation vortices go upstream irregularly when blade separation develops in the front half of the cell, and re-enter the rotor on the hub side in the rear half of it. The unsteady aerodynamic force and torsional moment acting on the blade tip section have been evaluated from the time-dependent ensemble-averages of the casing wall pressure distribution. The force fluctuation due to the short length-scale cells is somewhat smaller than that for the long length-scale cell. The blade suffers two peaks of the force during a period of the short length-scale cells passing through it. The moment fluctuation for the short length-scale cells is considerably larger than that for the long length-scale cell.
publisherThe American Society of Mechanical Engineers (ASME)
titleComparative Studies on Short and Long Length-Scale Stall Cell Propagating in an Axial Compressor Rotor
typeJournal Paper
journal volume123
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.1326085
journal fristpage24
journal lastpage30
identifier eissn1528-8900
keywordsPressure
keywordsFlow (Dynamics)
keywordsCompressors
keywordsRotors
keywordsBlades
keywordsVortices
keywordsSuction AND Rotation
treeJournal of Turbomachinery:;2001:;volume( 123 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record