Show simple item record

contributor authorGautam Pamula
contributor authorSrinath V. Ekkad
contributor authorSumanta Acharya
date accessioned2017-05-09T00:06:17Z
date available2017-05-09T00:06:17Z
date copyrightApril, 2001
date issued2001
identifier issn0889-504X
identifier otherJOTUEI-28687#281_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126052
description abstractDetailed heat transfer distributions are presented inside a two-pass coolant square channel connected by two rows of holes on the divider walls. The enhanced cooling is achieved by a combination of impingement and crossflow-induced swirl. Three configurations are examined where the crossflow is generated from one coolant passage to the adjoining coolant passage through a series of straight and angled holes and a two-dimensional slot placed along the dividing wall. The holes/slots deliver the flow from one passage to another. This is typically achieved in a conventional design by a 180 deg U-bend. Heat transfer distributions will be presented on the sidewalls of the passages. A transient liquid crystal technique is applied to measure the detailed heat transfer coefficient distributions inside the passages. Results for the three-hole supply cases are compared with the results from the traditional 180 deg turn passage for three channel flow Reynolds numbers ranging between 10,000 and 50,000. Results show that the new feed system, from first pass to second pass using crossflow injection holes, produces significantly higher Nusselt numbers on the second pass walls. The heat transfer enhancements in the second pass of these channels are as much as two to three times greater than that obtained in the second pass for a channel with a 180 deg turn. Results are also compared with channels that have only one row of discharge holes.
publisherThe American Society of Mechanical Engineers (ASME)
titleInfluence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
typeJournal Paper
journal volume123
journal issue2
journal titleJournal of Turbomachinery
identifier doi10.1115/1.1343467
journal fristpage281
journal lastpage287
identifier eissn1528-8900
keywordsFlow (Dynamics)
keywordsHeat transfer
keywordsChannels (Hydraulic engineering) AND Reynolds number
treeJournal of Turbomachinery:;2001:;volume( 123 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record