Show simple item record

contributor authorMihai Arghir
contributor authorJean Fre⁁ne
date accessioned2017-05-09T00:06:10Z
date available2017-05-09T00:06:10Z
date copyrightJanuary, 2001
date issued2001
identifier issn0742-4787
identifier otherJOTRE9-28694#118_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125977
description abstractIt is well known that for a reduced Reynolds number (Re*=ρVH/μ⋅H/L) greater than unity, inertia forces have a dominant effect in the transport equations, thus rendering the classical lubrication equation inapplicable. The so called “bulk flow” system of equations is then the appropriate mathematical model for describing the flow in bearing and seals operating at Re*≥1. The difficulty in integrating this system of equations is that one has to deal with coupled pressure and velocity fields. Analytic methods have a very narrow application range so a numerical method has been proposed by Launder and Leschziner in 1978. It represents a natural extrapolation of the successful SIMPLE algorithm applied to the bulk flow system of equations. The algorithm used rectangular, staggered control volumes and represented the state of the art at that moment. In the present work we introduced a method using triangular control volumes. The basic advantage of triangles versus rectangles is that non rectangular domains can be dealt without any a priori limitation. The present paper is focused on the description of the discretized equations and of the solution algorithm. Validations for bearings and seals operating in incompressible, laminar and turbulent flow regime are finally proving the accuracy of the method.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Triangle Based Finite Volume Method for the Integration of Lubrication’s Incompressible Bulk Flow Equations
typeJournal Paper
journal volume123
journal issue1
journal titleJournal of Tribology
identifier doi10.1115/1.1326444
journal fristpage118
journal lastpage124
identifier eissn1528-8897
keywordsPressure
keywordsFlow (Dynamics)
keywordsEquations
keywordsBearings
keywordsInertia (Mechanics) AND Algorithms
treeJournal of Tribology:;2001:;volume( 123 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record