Show simple item record

contributor authorXinhai Zhu
contributor authorKlaus Weinmann
contributor authorAbhijit Chandra
date accessioned2017-05-09T00:05:02Z
date available2017-05-09T00:05:02Z
date copyrightJuly, 2001
date issued2001
identifier issn0094-4289
identifier otherJEMTA8-27021#329_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125306
description abstractThe purpose of this study is to determine analytically the orientations of localized necks occurring in sheet metal forming processes, and obtain the corresponding forming limit diagrams (FLDs). In addition to the force equilibrium condition as adopted by other researchers, we include the moment equilibrium in this study. The shear terms due to the perturbation are found to vanish inside the localized neck of a region of deformation. This simplifies the two-dimensional problem to a one-dimensional problem. Furthermore, it is found that there are only three possible orientations for the initiation of a localized neck, i.e., two principal directions and one zero extension direction (which applies only to negative strain ratio deformations). A special case study using the von Mises yield criterion is also presented in this paper. Predictions from our unified analysis matches with the results of Hill, R., 1952, “On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets,” J. Mech. Phys. Solids, 1, pp. 19–30. For the negative strain ratio regime (left-hand side of the FLDs), and with the results of Storen, S., and Rice, R., 1975, “Localized Necking in Thin Sheets,” J. Mech. Phys. Solids, 23, pp. 421–441. For the positive strain ratio regime (right hand-side of the FLD). When the localized neck is assumed to be in the zero extension direction for the negative strain ratio deformation, deformation theory and flow theory of plasticity give the same limit strains, and a unified solution to the limit strain is obtained. This solution is independent of the specific yield criterion used.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Unified Bifurcation Analysis of Sheet Metal Forming Limits
typeJournal Paper
journal volume123
journal issue3
journal titleJournal of Engineering Materials and Technology
identifier doi10.1115/1.1370397
journal fristpage329
journal lastpage333
identifier eissn1528-8889
keywordsDeformation
keywordsStress
keywordsSheet metal work
keywordsEquilibrium (Physics)
keywordsBifurcation
keywordsShear (Mechanics)
keywordsFlow (Dynamics)
keywordsForce
keywordsPlasticity AND Rotation
treeJournal of Engineering Materials and Technology:;2001:;volume( 123 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record