| contributor author | Dieter E. Bohn | |
| contributor author | Professor and Director | |
| contributor author | Karsten A. Kusterer | |
| contributor author | Research Engineer | |
| date accessioned | 2017-05-09T00:03:41Z | |
| date available | 2017-05-09T00:03:41Z | |
| date copyright | April, 2000 | |
| date issued | 2000 | |
| identifier issn | 0889-504X | |
| identifier other | JOTUEI-28676#334_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/124496 | |
| description abstract | A leading edge cooling configuration is investigated numerically by application of a three-dimensional conjugate fluid flow and heat transfer solver, CHT-flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multiblock technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45 deg. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three-dimensional and asymmetric jet flow field. Within a secondary flow analysis, the cooling fluid jets are investigated in detail. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a respectable agreement concerning the vortex development. [S0889-504X(00)00102-1] | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Aerothermal Investigations of Mixing Flow Phenomena in Case of Radially Inclined Ejection Holes at the Leading Edge | |
| type | Journal Paper | |
| journal volume | 122 | |
| journal issue | 2 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.555456 | |
| journal fristpage | 334 | |
| journal lastpage | 339 | |
| identifier eissn | 1528-8900 | |
| keywords | Pressure | |
| keywords | Flow (Dynamics) | |
| keywords | Cooling | |
| keywords | Suction | |
| keywords | Vortices | |
| keywords | Blades | |
| keywords | Jets AND Cascades (Fluid dynamics) | |
| tree | Journal of Turbomachinery:;2000:;volume( 122 ):;issue: 002 | |
| contenttype | Fulltext | |