| contributor author | Edward Graf | |
| contributor author | Sudhakar Neti | |
| date accessioned | 2017-05-09T00:02:37Z | |
| date available | 2017-05-09T00:02:37Z | |
| date copyright | December, 2000 | |
| date issued | 2000 | |
| identifier issn | 0098-2202 | |
| identifier other | JFEGA4-27157#761_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/123828 | |
| description abstract | Gas-liquid two-phase bubbly flows in right angle bends have been studied. Numerical predictions of the flow in right angle bends are made from first principles using an Eulerian-Eulerian two-fluid model. The flow geometry includes a sufficiently long inlet duct section to assure fully developed flow conditions into the bend. The strong flow stratification encountered in these flows warrant the use of Eulerian-Eulerian description of the flow, and may have implications for flow boiling in U-bends. The computational model includes the finer details associated with turbulence behavior and a robust void fraction algorithm necessary for the prediction of such a flow. The flow in the bend is strongly affected by the centrifugal forces, and results in large void fractions at the inner part of the bend. Numerical predictions of pressure drop for the flow with different bend radii and duct aspect ratios are presented, and are in general agreement with data in the literature. Measurements of pressure drop for an air-water bubbly flow in a bend with a nondimensional bend radius of 5.5 have also been performed, and these pressure drop measurements also substantiate the computations described above. In addition to the global pressure drop for the bend, the pressure variations across the cross section of the duct that give rise to the fluid migration (due to centrifugal forces), and stratification of the phases are interesting in their own right. [S0098-2202(00)01004-X] | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Two-Phase Flow Pressure Drop in Right Angle Bends | |
| type | Journal Paper | |
| journal volume | 122 | |
| journal issue | 4 | |
| journal title | Journal of Fluids Engineering | |
| identifier doi | 10.1115/1.1313246 | |
| journal fristpage | 761 | |
| journal lastpage | 768 | |
| identifier eissn | 1528-901X | |
| keywords | Bubbly flow | |
| keywords | Two-phase flow | |
| keywords | Computation | |
| keywords | Ducts | |
| keywords | Equations | |
| keywords | Porosity | |
| keywords | Pressure drop | |
| keywords | Pressure | |
| keywords | Flow (Dynamics) | |
| keywords | Turbulence | |
| keywords | Bubbles | |
| keywords | Fluids | |
| keywords | Algorithms | |
| keywords | Force | |
| keywords | Measurement | |
| keywords | Momentum AND Water | |
| tree | Journal of Fluids Engineering:;2000:;volume( 122 ):;issue: 004 | |
| contenttype | Fulltext | |