| contributor author | Yuchen Qiu | |
| contributor author | John M. Tarbell | |
| date accessioned | 2017-05-09T00:01:56Z | |
| date available | 2017-05-09T00:01:56Z | |
| date copyright | February, 2000 | |
| date issued | 2000 | |
| identifier issn | 0148-0731 | |
| identifier other | JBENDY-25899#77_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/123406 | |
| description abstract | The endothelial cells (ECs) lining a blood vessel wall are exposed to both the wall shear stress (WSS) of blood flow and the circumferential strain (CS) of pulsing artery wall motion. These two forces and their interaction are believed to play a role in determining remodeling of the vessel wall and development of arterial disease (atherosclerosis). This study focused on the WSS and CS dynamic behavior in a compliant model of a coronary artery taking into account the curvature of the bending artery and physiological radial wall motion. A three-dimensional finite element model with transient flow and moving boundaries was set up to simulate pulsatile flow with physiological pressure and flow wave forms characteristic of the coronary arteries. The characteristic coronary artery curvature and flow conditions applied to the simulation were: aspect ratio (λ)=10, diameter variation (DV)=6 percent, mean Reynolds number (Re)=150, and unsteadiness parameter (α)=3. The results show that mean WSS is about 50 percent lower on the inside wall than the outside wall while WSS oscillation is stronger on the inside wall. The stress phase angle (SPA) between CS and WSS, which characterizes the dynamics of the mechanical force pattern applied to the endothelial cell layer, shows that CS and WSS are more out of phase in the coronaries than in any other region of the circulation (−220 deg on the outside wall, −250 deg on the inside wall). This suggests that in addition to WSS, SPA may play a role in localization of coronary atherosclerosis. [S0148-0731(00)01201-2] | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery | |
| type | Journal Paper | |
| journal volume | 122 | |
| journal issue | 1 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.429629 | |
| journal fristpage | 77 | |
| journal lastpage | 85 | |
| identifier eissn | 1528-8951 | |
| keywords | Flow (Dynamics) | |
| keywords | Stress | |
| keywords | Exterior walls | |
| keywords | Shear (Mechanics) | |
| keywords | Pulsatile flow | |
| keywords | Vessels | |
| keywords | Coronary arteries | |
| keywords | Simulation | |
| keywords | Pressure | |
| keywords | Cycles | |
| keywords | Motion | |
| keywords | Computer simulation | |
| keywords | Atherosclerosis AND Waves | |
| tree | Journal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 001 | |
| contenttype | Fulltext | |