Show simple item record

contributor authorJack D. Lemmon
contributor authorAjit P. Yoganathan
date accessioned2017-05-09T00:01:53Z
date available2017-05-09T00:01:53Z
date copyrightApril, 2000
date issued2000
identifier issn0148-0731
identifier otherJBENDY-25900#109_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123379
description abstractAided by advancements in computer speed and modeling techniques, computational modeling of cardiac function has continued to develop over the past twenty years. The goal of the current study was to develop a computational model that provides blood–tissue interaction under physiologic flow conditions, and apply it to a thin-walled model of the left heart. To accomplish this goal, the Immersed Boundary Method was used to study the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology. The fluid mass and momentum conservation equations were solved using Patankar’s Semi-Implicit Method for Pressure Linked Equations (SIMPLE). A left heart model was developed to examine diastolic function, and consisted of the left ventricle, left atrium, and pulmonary flow. The input functions for the model included the pulmonary driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions for validation. The inflow velocities through the mitral valve corresponded with clinical values (E-wave=74.4 cm/s, A-wave=43 cm/s, and E/A=1.73). The pressure traces for the atrium and ventricle, and the appearance of the ventricular flow fields throughout filling, agreed with those observed in the heart. In addition, the atrial flow fields could be observed in this model and showed the conduit and pump functions that current theory suggests. The ability to examine atrial function in the present model is something not described previously in computational simulations of cardiac function. [S0148-0731(00)01302-9]
publisherThe American Society of Mechanical Engineers (ASME)
titleThree-Dimensional Computational Model of Left Heart Diastolic Function With Fluid–Structure Interaction
typeJournal Paper
journal volume122
journal issue2
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.429648
journal fristpage109
journal lastpage117
identifier eissn1528-8951
keywordsFlow (Dynamics)
keywordsFluids
keywordsFibers
keywordsSimulation
keywordsBiological tissues
keywordsBlood
keywordsValves
keywordsEquations
keywordsFunctions
keywordsForce
keywordsPressure
keywordsFluid structure interaction
keywordsInflow
keywordsEngineering simulation
keywordsModeling
keywordsPhysiology
keywordsRelaxation (Physics)
keywordsMomentum AND Stiffness
treeJournal of Biomechanical Engineering:;2000:;volume( 122 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record