Show simple item record

contributor authorD. O. Baun
contributor authorR. D. Flack
date accessioned2017-05-09T00:00:08Z
date available2017-05-09T00:00:08Z
date copyrightMarch, 1999
date issued1999
identifier issn0098-2202
identifier otherJFEGA4-27137#126_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/122404
description abstractA research pump intended for both flow visualization studies and direct measurement of hydrodynamic radial and axial forces has been developed. The impeller and the volute casing are constructed from Plexiglas which facilitates optical access for laser velocimetry measurements of the flow field both inside the impeller and in the volute casing. The pump housing is designed for flexibility allowing for each interchange of impellers and volute configurations. The pump rotor is supported by three radial magnetic bearings and one double acting magnetic thrust bearing. The magnetic bearings have been calibrated to characterize the force versus coil current and air gap relationship for each bearing type. Linear calibration functions valid for rotor eccentricities of up to 2/3 of the nominal bearing clearances and force level of ±58 N (13 lbf ) and ±267 N (60 lbf ) for the radial and axial bearings, respectively, were found. A detailed uncertainty analysis of the force calibration functions was conducted such that meaningful uncertainty bounds can be applied to in situ force measurements. Hysteresis and eddy current effects were quantified for each bearing such that their effect on the in situ force measurements could be assessed. By directly measuring the bearing reaction forces it is possible to determine the radial and axial hydraulic loads acting on the pump impeller. To demonstrate the capability of the magnetic bearings as active load cells representative hydraulic force measurements for a centered 4 vane 16 degree log spiral radial flow impeller operating in a single tongue spiral volute casing were made. At shut-off a nondimensional radial thrust of 0.084 was measured. A minimum nondimensional radial thrust of about 0.007 was observed at the nominal design flow. The nondimensional radial thrust increased to about 0.019 at 120 percent of design flow. The nondimensional axial thrust had a maximum at shut-off of 0.265 and decreased steadily to approximately 0.185 at 120 percent of design flow. Two regions of increasing axial thrust, in the flow range 75 to 100 percent of design flow, were observed. The measurements are compared to radial and axial force predictions using classical force models. The direct radial force measurements are compared to a representative set of radial force measurements from the literature. In addition, the directly measured radial force at design flow is compared to a single representative radial force measurement (obtained from the literature) calculated from the combination of static pressure and net momentum flux distribution at the impeller exit.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Plexiglas Research Pump With Calibrated Magnetic Bearings/Load Cells for Radial and Axial Hydraulic Force Measurement
typeJournal Paper
journal volume121
journal issue1
journal titleJournal of Fluids Engineering
identifier doi10.1115/1.2821992
journal fristpage126
journal lastpage132
identifier eissn1528-901X
keywordsStress
keywordsPumps
keywordsMagnetic bearings
keywordsForce measurement
keywordsForce
keywordsFlow (Dynamics)
keywordsImpellers
keywordsThrust
keywordsBearings
keywordsDesign
keywordsRotors
keywordsCalibration
keywordsFunctions
keywordsMeasurement
keywordsUncertainty
keywordsLaser velocimetry
keywordsRadial flow
keywordsThrust bearings
keywordsPump impellers
keywordsEddy currents (Electricity)
keywordsFlow visualization
keywordsPlasticity
keywordsPressure AND Momentum
treeJournal of Fluids Engineering:;1999:;volume( 121 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record