contributor author | K. Wechsler | |
contributor author | M. Breuer | |
contributor author | F. Durst | |
date accessioned | 2017-05-09T00:00:03Z | |
date available | 2017-05-09T00:00:03Z | |
date copyright | June, 1999 | |
date issued | 1999 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27140#318_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/122359 | |
description abstract | The present paper summarizes steady and unsteady computations of turbulent flow induced by a pitched-blade turbine (four blades, 45° inclined) in a baffled stirred tank. Mean flow and turbulence characteristics were determined by solving the Reynolds averaged Navier-Stokes equations together with a standard k-ε turbulence model. The round vessel had a diameter of T = 152 mm. The turbine of diameter T/3 was located at a clearance of T/3. The Reynolds number (Re) of the experimental investigation was 7280, and computations were performed at Re = 7280 and Re = 29,000. Techniques of high-performance computing were applied to permit grid sensitivity studies in order to isolate errors resulting from deficiencies of the turbulence model and those resulting from insufficient grid resolution. Both steady and unsteady computations were performed and compared with respect to quality and computational effort. Unsteady computations considered the time-dependent geometry which is caused by the rotation of the impeller within the baffled stirred tank reactor. Steady-state computations also considered neglect the relative motion of impeller and baffles. By solving the governing equations of motion in a rotating frame of reference for the region attached to the impeller, the steady-state approach is able to capture trailing vortices. It is shown that this steady-state computational approach yields numerical results which are in excellent agreement with fully unsteady computations at a fraction of the time and expense for the stirred vessel configuration under consideration. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Steady and Unsteady Computations of Turbulent Flows Induced by a 4/45° Pitched-Blade Impeller | |
type | Journal Paper | |
journal volume | 121 | |
journal issue | 2 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.2822210 | |
journal fristpage | 318 | |
journal lastpage | 329 | |
identifier eissn | 1528-901X | |
keywords | Turbulence | |
keywords | Impellers | |
keywords | Blades | |
keywords | Computation | |
keywords | Steady state | |
keywords | Vessels | |
keywords | Turbines | |
keywords | Errors | |
keywords | Geometry | |
keywords | Structural frames | |
keywords | Resolution (Optics) | |
keywords | Equations of motion | |
keywords | Clearances (Engineering) | |
keywords | Navier-Stokes equations | |
keywords | Wake turbulence | |
keywords | Reynolds number | |
keywords | Rotation | |
keywords | Flow (Dynamics) AND Motion | |
tree | Journal of Fluids Engineering:;1999:;volume( 121 ):;issue: 002 | |
contenttype | Fulltext | |