Show simple item record

contributor authorA. K. Gupta
contributor authorT. Hasegawa
contributor authorS. Bolz
date accessioned2017-05-08T23:59:26Z
date available2017-05-08T23:59:26Z
date copyrightSeptember, 1999
date issued1999
identifier issn0195-0738
identifier otherJERTD2-26483#209_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/122050
description abstractThe structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1150°C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH, and C2 species, and pollutant emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O2 concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was observed to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high-oxygen concentration, the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH, and C2 increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low-oxygen concentration and single-stage combustion behavior at high-oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutant emission, including CO2 and NOx , was much lower with highly preheated combustion air at low O2 concentration than with normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned, highly preheated air. Highly preheated air combustion provides much higher heat flux than normal air, which suggests direct energy savings and a reduction of CO2 to the environment. Colorless oxidation of fuel has been observed under certain conditions.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
typeJournal Paper
journal volume121
journal issue3
journal titleJournal of Energy Resources Technology
identifier doi10.1115/1.2795984
journal fristpage209
journal lastpage216
identifier eissn1528-8994
keywordsTemperature
keywordsFlames
keywordsOxygen
keywordsEmissions
keywordsCombustion
keywordsFuels
keywordsPollution
keywordsFurnaces
keywordsoxidation
keywordsTurbulent diffusion
keywordsComputer software
keywordsHeat flux AND Flow (Dynamics)
treeJournal of Energy Resources Technology:;1999:;volume( 121 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record