Show simple item record

contributor authorJ. A. Moore
contributor authorD. A. Steinman
contributor authorS. Prakash
contributor authorK. W. Johnston
contributor authorC. R. Ethier
date accessioned2017-05-08T23:59:00Z
date available2017-05-08T23:59:00Z
date copyrightJune, 1999
date issued1999
identifier issn0148-0731
identifier otherJBENDY-26020#265_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121794
description abstractPurpose: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. Method: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. Results: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. Conclusions: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the “primary” geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. “Secondary” geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
typeJournal Paper
journal volume121
journal issue3
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.2798319
journal fristpage265
journal lastpage272
identifier eissn1528-8951
keywordsBlood flow
keywordsStress
keywordsShear (Mechanics)
keywordsDiseases
keywordsGeometry
keywordsHemodynamics
keywordsFlow (Dynamics)
keywordsTopology AND Finite element model
treeJournal of Biomechanical Engineering:;1999:;volume( 121 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record