Show simple item record

contributor authorC. S. Lee
contributor authorK. B. Chandran
contributor authorL. D. Chen
date accessioned2017-05-08T23:49:30Z
date available2017-05-08T23:49:30Z
date copyrightFebruary, 1996
date issued1996
identifier issn0148-0731
identifier otherJBENDY-25959#97_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116607
description abstractThe cause of cavitation in mechanical heart valves is investigated with Medtronic Hall tilting disk valves in an in vitro flow system simulating the closing event in the mitral position. Recordings of pressure wave forms and photographs in the vicinity of the inflow surface of the valve are attempted under controlled transvalvular loading rates averaged during valve closing period. The results revealed presence of a local flow field with a very high velocity around the seat stop of mechanical heart valves that could induce pressure reduction below liquid vapor pressure and a cloud of cavitation bubbles. The analysis of the results indicates that the “fluid squeezing” between the stop and occluder as the main cause of cavitation in Medtronic Hall valves. The threshold loading rate for cavitation initiation around the stop was found to be very low (300 and 400 mmHg/s; half the predicted normal human loading rate that was estimated to be 750 mmHg/s) because even a mild impact created a high speed local flow field on the occluder surface that could induce pressure reduction below vapor pressure. The present study suggests that mechanical heart valves with stops at the edge of major orifice region are more vulnerable to cavitation, and hence, have higher potential for damage on valve components and formed elements in blood.
publisherThe American Society of Mechanical Engineers (ASME)
titleCavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect
typeJournal Paper
journal volume118
journal issue1
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.2795951
journal fristpage97
journal lastpage105
identifier eissn1528-8951
keywordsDynamics (Mechanics)
keywordsFluids
keywordsCavitation
keywordsProstheses
keywordsHeart valve prostheses
keywordsValves
keywordsPressure
keywordsFlow (Dynamics)
keywordsVapor pressure
keywordsWaves
keywordsBubbles
keywordsBlood
keywordsDisks AND Inflow
treeJournal of Biomechanical Engineering:;1996:;volume( 118 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record