Show simple item record

contributor authorY. W. Kim
contributor authorJ. P. Downs
contributor authorW. Abdel-Messeh
contributor authorG. D. Steuber
contributor authorS. Tanrikut
contributor authorF. O. Soechting
date accessioned2017-05-08T23:48:38Z
date available2017-05-08T23:48:38Z
date copyrightJanuary, 1995
date issued1995
identifier issn0889-504X
identifier otherJOTUEI-28642#1_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116164
description abstractThe clearance gap between the stationary outer air seal and blade tips of an axial turbine allows a clearance gap leakage flow to be driven through the gap by the pressure-to-suction side pressure difference. The presence of strong secondary flows on the pressure side of the airfoil tends to deliver air from the hottest regions of the mainstream to the clearance gap. The blade tip region, particularly near the trailing edge, is very difficult to cool adequately with blade internal coolant flow. In this case, film cooling injection directly onto the blade tip region can be used in an attempt to directly reduce the heat transfer rates from the hot gases in the clearance gap to the blade tip. The present paper is intended as a memorial tribute to the late Professor Darryl E. Metzger, who made significant contributions in this particular area over the past decade. A summary of this work is made to present the results of his more recent experimental work, which was performed to investigate the effects of film coolant injection on convection heat transfer to the turbine blade tip for a variety of tip shapes and coolant injection configurations. Experiments are conducted with blade tip models that are stationary relative to the simulated outer air seal based on the result of earlier works that found the leakage flow to be mainly a pressure-driven flow, which is related strongly to the airfoil pressure loading distribution, and only weakly, if at all, to the relative motion between blade tip and shroud. Both heat transfer and film effectiveness are measured locally over the test surface using a transient thermal liquid crystal test technique with a computer vision data acquisition and reduction system for various combinations of clearance heights, clearance flow Reynolds numbers, and film flow rates with different coolant injection configurations. The present results reveal a strong dependency of film cooling performance on the choice of the coolant supply hole shapes and injection locations for a given tip geometry.
publisherThe American Society of Mechanical Engineers (ASME)
titleDarryl E. Metzger Memorial Session Paper: A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
typeJournal Paper
journal volume117
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.2835638
journal fristpage1
journal lastpage11
identifier eissn1528-8900
keywordsHeat transfer
keywordsTurbine blades
keywordsBlades
keywordsClearances (Engineering)
keywordsPressure
keywordsCoolants
keywordsFlow (Dynamics)
keywordsCooling
keywordsShapes
keywordsLeakage flows
keywordsAirfoils
keywordsData acquisition
keywordsConvection
keywordsTurbines
keywordsComputers
keywordsLiquid crystals
keywordsGases
keywordsMotion
keywordsSuction
keywordsReynolds number
keywordsEngineering teachers
keywordsFilm flow AND Geometry
treeJournal of Turbomachinery:;1995:;volume( 117 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record