Show simple item record

contributor authorS. C. Lau
contributor authorR. D. McMillin
contributor authorJ. C. Han
date accessioned2017-05-08T23:36:55Z
date available2017-05-08T23:36:55Z
date copyrightJuly, 1991
date issued1991
identifier issn0889-504X
identifier otherJOTUEI-28613#367_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/109376
description abstractExperiments have been conducted to study the turbulent heat transfer and friction for fully developed flow of air in a square channel in which two opposite walls are roughened with 90 deg full ribs, parallel and crossed full ribs with angles of attack (α) of 60 and 45 deg, 90 deg discrete ribs, and parallel and crossed discrete ribs with α = 60, 45, and 30 deg. The discrete ribs are staggered in alternate rows of three and two ribs. Results are obtained for a rib height-to-channel hydraulic diameter ratio of 0.0625, a rib pitch-to-height ratio of 10, and Reynolds numbers between 10,000 and 80,000. Parallel angled discrete ribs are superior to 90 deg discrete ribs and parallel angled full ribs, and are recommended for internal cooling passages in gas turbine airfoils. For α = 60 and 45 deg, parallel discrete ribs have higher ribbed wall heat transfer, lower smooth wall heat transfer, and lower channel pressure drop than parallel full ribs. Parallel 60 deg discrete ribs have the highest ribbed wall heat transfer and parallel 30 deg discrete ribs cause the lowest pressure drop. The heat transfer and pressure drops in crossed angled full and discrete rib cases are all lower than those in the corresponding 90 deg and parallel angled rib cases. Crossed arrays of angled ribs have poor thermal performance and are not recommended.
publisherThe American Society of Mechanical Engineers (ASME)
titleHeat Transfer Characteristics of Turbulent Flow in a Square Channel With Angled Discrete Ribs
typeJournal Paper
journal volume113
journal issue3
journal titleJournal of Turbomachinery
identifier doi10.1115/1.2927885
journal fristpage367
journal lastpage374
identifier eissn1528-8900
keywordsHeat transfer
keywordsChannels (Hydraulic engineering)
keywordsTurbulence
keywordsPressure drop
keywordsTurbulent heat transfer
keywordsAirfoils
keywordsReynolds number
keywordsGas turbines
keywordsCooling
keywordsFlow (Dynamics) AND Friction
treeJournal of Turbomachinery:;1991:;volume( 113 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record