Show simple item record

contributor authorMasanobu Shinozuka
contributor authorGeorge Deodatis
date accessioned2017-05-08T23:34:24Z
date available2017-05-08T23:34:24Z
date copyrightApril, 1991
date issued1991
identifier issn0003-6900
identifier otherAMREAD-25601#191_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/107909
description abstractThe subject of this paper is the simulation of one-dimensional, uni-variate, stationary, Gaussian stochastic processes using the spectral representation method. Following this methodology, sample functions of the stochastic process can be generated with great computational efficiency using a cosine series formula. These sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic process when the number N of the terms in the cosine series is large. The ensemble-averaged power spectral density or autocorrelation function approaches the corresponding target function as the sample size increases. In addition, the generated sample functions possess ergodic characteristics in the sense that the temporally-averaged mean value and the autocorrelation function are identical with the corresponding targets, when the averaging takes place over the fundamental period of the cosine series. The most important property of the simulated stochastic process is that it is asymptotically Gaussian as N → ∞. Another attractive feature of the method is that the cosine series formula can be numerically computed efficiently using the Fast Fourier Transform technique. The main area of application of this method is the Monte Carlo solution of stochastic problems in engineering mechanics and structural engineering. Specifically, the method has been applied to problems involving random loading (random vibration theory) and random material and geometric properties (response variability due to system stochasticity).
publisherThe American Society of Mechanical Engineers (ASME)
titleSimulation of Stochastic Processes by Spectral Representation
typeJournal Paper
journal volume44
journal issue4
journal titleApplied Mechanics Reviews
identifier doi10.1115/1.3119501
journal fristpage191
journal lastpage204
identifier eissn0003-6900
keywordsSimulation
keywordsStochastic processes
keywordsFunctions
keywordsFormulas
keywordsStructural engineering
keywordsSpectral energy distribution
keywordsEngineering mechanics
keywordsRandom vibration AND Fast Fourier transforms
treeApplied Mechanics Reviews:;1991:;volume( 044 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record