YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Predicting Resilient Modulus of Cementitiously Stabilized Subgrade Soils Using Neural Network, Support Vector Machine, and Gaussian Process Regression 

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 006:;page 04021073-1
    Author(s): Xi Hu; Pranshoo Solanki
    Publisher: ASCE
    Abstract: Artificial neural network (ANN), support vector machine (SVM), and Gaussian process regression (GPR) were developed in this study for predicting resilient modulus (Mr) values of cementitously stabilized subgrade soils. A ...
    Request PDF

    Improving the Predictive Analytics of Machine-Learning Pipelines for Bridge Infrastructure Asset Management Applications: An Upstream Data Workflow to Address Data Quality Issues in the National Bridge Inventory Database 

    Source: Journal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 001:;page 04023103-1
    Author(s): Xi Hu; Rayan H. Assaad
    Publisher: ASCE
    Abstract: The increasing availability of bridge data from the National Bridge Inventory (NBI) offers a great opportunity to perform predictive analytics (such as bridge deterioration prediction) using machine learning (ML) pipelines ...
    Request PDF

    Expert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity 

    Source: Journal of Bridge Engineering:;2023:;Volume ( 028 ):;issue: 009:;page 04023058-1
    Author(s): Rayan H. Assaad; Xi Hu; Mohab Hussein
    Publisher: ASCE
    Abstract: Bridge pile capacity is a vital criterion used to assure the durability and stability of a bridge pile foundation. In fact, reliably predicting the pile capacity plays a significant role in supporting data-driven decisions ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian