YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-8 of 8

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Sources of Error in Dual-Wavelength Radar Remote Sensing of Cloud Liquid Water Content 

    Source: Journal of Atmospheric and Oceanic Technology:;2007:;volume( 024 ):;issue: 008:;page 1317
    Author(s): Williams, John K.; Vivekanandan, J.
    Publisher: American Meteorological Society
    Abstract: Dual-wavelength ratio (DWR) techniques offer the prospect of producing high-resolution mapping of cloud microphysical properties, including retrievals of cloud liquid water content (LWC) from reflectivity measured by ...
    Request PDF

    Probabilistic Forecasts of Mesoscale Convective System Initiation Using the Random Forest Data Mining Technique 

    Source: Weather and Forecasting:;2016:;volume( 031 ):;issue: 002:;page 581
    Author(s): Ahijevych, David; Pinto, James O.; Williams, John K.; Steiner, Matthias
    Publisher: American Meteorological Society
    Abstract: data mining and statistical learning method known as a random forest (RF) is employed to generate 2-h forecasts of the likelihood for initiation of mesoscale convective systems (MCS-I). The RF technique uses an ensemble ...
    Request PDF

    Recent Advances in the Understanding of Near-Cloud Turbulence 

    Source: Bulletin of the American Meteorological Society:;2011:;volume( 093 ):;issue: 004:;page 499
    Author(s): Lane, Todd P.; Sharman, Robert D.; Trier, Stanley B.; Fovell, Robert G.; Williams, John K.
    Publisher: American Meteorological Society
    Abstract: o has flown in a commercial aircraft is familiar with turbulence. Unexpected encounters with turbulence pose a safety risk to airline passengers and crew, can occasionally damage aircraft, and indirectly increase the cost ...
    Request PDF

    Probabilistic 0–1-h Convective Initiation Nowcasts that Combine Geostationary Satellite Observations and Numerical Weather Prediction Model Data 

    Source: Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 005:;page 1039
    Author(s): Mecikalski, John R.; Williams, John K.; Jewett, Christopher P.; Ahijevych, David; LeRoy, Anita; Walker, John R.
    Publisher: American Meteorological Society
    Abstract: he Geostationary Operational Environmental Satellite (GOES)-R convective initiation (CI) algorithm predicts CI in real time over the next 0?60 min. While GOES-R CI has been very successful in tracking nascent clouds and ...
    Request PDF

    Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles 

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 005:;page 1819
    Author(s): Gagne, David John;McGovern, Amy;Haupt, Sue Ellen;Sobash, Ryan A.;Williams, John K.;Xue, Ming
    Publisher: American Meteorological Society
    Abstract: AbstractForecasting severe hail accurately requires predicting how well atmospheric conditions support the development of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching ...
    Request PDF

    Using Artificial Intelligence to Improve Real-Time Decision Making for High-Impact Weather 

    Source: Bulletin of the American Meteorological Society:;2017:;volume( 098 ):;issue: 010:;page 2073
    Author(s): McGovern, Amy; Elmore, Kimberly L.; Gagne, David John; Haupt, Sue Ellen; Karstens, Christopher D.; Lagerquist, Ryan; Smith, Travis; Williams, John K.
    Publisher: American Meteorological Society
    Abstract: is paper demonstrates that modern AI techniques can aid forecasters on a wide variety of high-impact weather phenomena.
    Request PDF

    The History and Practice of AI in the Environmental Sciences 

    Source: Bulletin of the American Meteorological Society:;2021:;volume( ):;issue:
    Author(s): Haupt, Sue Ellen;Gagne, David John;Hsieh, William W.;Krasnopolsky, Vladimir;McGovern, Amy;Marzban, Caren;Moninger, William;Lakshmanan, Valliappa;Tissot, Philippe;Williams, John K.
    Publisher: American Meteorological Society
    Request PDF

    Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences 

    Source: Bulletin of the American Meteorological Society:;2021:;volume( 102 ):;issue: 005
    Author(s): Boukabara, Sid-Ahmed;Krasnopolsky, Vladimir;Penny, Stephen G.;Stewart, Jebb Q.;McGovern, Amy;Hall, David;Ten Hoeve, John E.;Hickey, Jason;Allen Huang, Hung-Lung;Williams, John K.;Ide, Kayo;Tissot, Philippe;Haupt, Sue Ellen;Casey, Kenneth S.;Oza, Nikunj;Ge
    Publisher: American Meteorological Society
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian