YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-10 of 28

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations 

    Source: Monthly Weather Review:;2017:;volume( 145 ):;issue: 009:;page 3397
    Author(s): Schwartz, Craig S.; Sobash, Ryan A.
    Publisher: American Meteorological Society
    Abstract: Neighborhood approaches? have been used in two primary ways to post-process and verify high-resolution ensemble output. While the two methods appear deceptively similar, they in fact define events over different spatial ...
    Request PDF

    On the Impact of Additive Noise in Storm-Scale EnKF Experiments 

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 008:;page 3067
    Author(s): Sobash, Ryan A.; Wicker, Louis J.
    Publisher: American Meteorological Society
    Abstract: torm-scale ensemble Kalman filter (EnKF) studies routinely use methods to accelerate the spinup of convective structures when assimilating convective-scale radar observations. This typically involves adding coherent ...
    Request PDF

    Assimilating Surface Mesonet Observations with the EnKF to Improve Ensemble Forecasts of Convection Initiation on 29 May 2012 

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 009:;page 3700
    Author(s): Sobash, Ryan A.; Stensrud, David J.
    Publisher: American Meteorological Society
    Abstract: urface data assimilation (DA) has the potential to improve forecasts of convection initiation (CI) and short-term forecasts of convective evolution. Since the processes driving CI occur on scales inadequately observed by ...
    Request PDF

    Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model 

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 005:;page 1885
    Author(s): Sobash, Ryan A.;Kain, John S.
    Publisher: American Meteorological Society
    Abstract: AbstractEight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather ...
    Request PDF

    The Impact of Covariance Localization for Radar Data on EnKF Analyses of a Developing MCS: Observing System Simulation Experiments 

    Source: Monthly Weather Review:;2013:;volume( 141 ):;issue: 011:;page 3691
    Author(s): Sobash, Ryan A.; Stensrud, David J.
    Publisher: American Meteorological Society
    Abstract: everal observing system simulation experiments (OSSEs) were performed to assess the impact of covariance localization of radar data on ensemble Kalman filter (EnKF) analyses of a developing convective system. Simulated ...
    Request PDF

    Simulations of Severe Convective Systems Using 1- versus 3-km Grid Spacing 

    Source: Weather and Forecasting:;2023:;volume( 038 ):;issue: 003
    Author(s): Weisman, Morris L.; Manning, Kevin W.; Sobash, Ryan A.; Schwartz, Craig S.
    Publisher: American Meteorological Society
    Request PDF

    Generative Ensemble Deep Learning Severe Weather Prediction from a Deterministic Convection-Allowing Model 

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 002
    Author(s): Sha, Yingkai; Sobash, Ryan A.; Gagne, David John
    Publisher: American Meteorological Society
    Request PDF

    Convective-Scale Data Assimilation for the Weather Research and Forecasting Model Using the Local Particle Filter 

    Source: Monthly Weather Review:;2017:;volume( 145 ):;issue: 005:;page 1897
    Author(s): Poterjoy, Jonathan; Sobash, Ryan A.; Anderson, Jeffrey L.
    Publisher: American Meteorological Society
    Abstract: article filters (PFs) are Monte Carlo data assimilation techniques that operate with no parametric assumptions for prior and posterior errors. A data assimilation method introduced recently, called the local PF, approximates ...
    Request PDF

    A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model 

    Source: Weather and Forecasting:;2020:;volume( 035 ):;issue: 005:;page 1981
    Author(s): Sobash, Ryan A.;Romine, Glen S.;Schwartz, Craig S.
    Publisher: American Meteorological Society
    Request PDF

    NCAR’s Real-Time Convection-Allowing Ensemble Project 

    Source: Bulletin of the American Meteorological Society:;2018:;volume 100:;issue 002:;page 321
    Author(s): Schwartz, Craig S.; Romine, Glen S.; Sobash, Ryan A.; Fossell, Kathryn R.; Weisman, Morris L.
    Publisher: American Meteorological Society
    Abstract: AbstractBeginning 7 April 2015, scientists at the U.S. National Center for Atmospheric Research (NCAR) began producing daily, real-time, experimental, 10-member ensemble forecasts with 3-km horizontal grid spacing across ...
    Request PDF
    • 1
    • 2
    • 3
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Language (ISO)

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian