YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-4 of 4

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Convolutional Neural Networks–Based Model for Automated Sewer Defects Detection and Classification 

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 007:;page 04021036-1
    Author(s): Qianqian Zhou; Zuxiang Situ; Shuai Teng; Gongfa Chen
    Publisher: ASCE
    Abstract: Automated detection and classification of sewer defects can complement the conventional labor-intensive sewer inspection process by providing an essential tool to classify sewer defects in a more efficient, accurate, and ...
    Request PDF

    Comparative Effectiveness of Data Augmentation Using Traditional Approaches versus StyleGANs in Automated Sewer Defect Detection 

    Source: Journal of Water Resources Planning and Management:;2023:;Volume ( 149 ):;issue: 009:;page 04023045-1
    Author(s): Qianqian Zhou; Zuxiang Situ; Shuai Teng; Gongfa Chen
    Publisher: ASCE
    Abstract: This study compared how traditional data augmentation and the state-of-the-art style-based generative adversarial network (StyleGAN) benefit automated sewer defect detection using a You Only Look Once (YOLO) object detection ...
    Request PDF

    Closure to “Numerical Analysis on Shear Behavior of Grouped Head Stud Shear Connectors between Steel Girders and Precast Concrete Slabs with High-Strength Concrete-Filled Shear Pockets” by Shaodi Wang, Zhuangcheng Fang, Gongfa Chen, Haibo Ji 

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 007:;page 07022002
    Author(s): Shaodi Wang; Zhuangcheng Fang; Gongfa Chen; Haibo Jiang; Shuai Teng
    Publisher: ASCE
    Request PDF

    Numerical Analysis on Shear Behavior of Grouped Head Stud Shear Connectors between Steel Girders and Precast Concrete Slabs with High-Strength Concrete-Filled Shear Pockets 

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 006:;page 04021030-1
    Author(s): Shaodi Wang; Zhuangcheng Fang; Gongfa Chen; Haibo Jiang; Shuai Teng
    Publisher: ASCE
    Abstract: This study numerically investigated the shear behavior of novel composite shear connectors, which consisted of grouped head studs embedded in high-strength concrete-filled (HSC-filled) shear pockets. The shear pockets were ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian