YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-6 of 6

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Heteroscedastic Ensemble Postprocessing 

    Source: Monthly Weather Review:;2014:;volume( 142 ):;issue: 009:;page 3484
    Author(s): Satterfield, Elizabeth A.; Bishop, Craig H.
    Publisher: American Meteorological Society
    Abstract: nsemble variances provide a prediction of the flow-dependent error variance of the ensemble mean or, possibly, a high-resolution forecast. However, small ensemble size, unaccounted for model error, and imperfections in ...
    Request PDF

    Hidden Error Variance Theory. Part I: Exposition and Analytic Model 

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 005:;page 1454
    Author(s): Bishop, Craig H.; Satterfield, Elizabeth A.
    Publisher: American Meteorological Society
    Abstract: conundrum of predictability research is that while the prediction of flow-dependent error distributions is one of its main foci, chaos fundamentally hides flow-dependent forecast error distributions from empirical observation. ...
    Request PDF

    Using Forecast Temporal Variability to Evaluate Model Behavior 

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 012:;page 4785
    Author(s): Reynolds, Carolyn A.; Satterfield, Elizabeth A.; Bishop, Craig H.
    Publisher: American Meteorological Society
    Abstract: he statistics of model temporal variability ought to be the same as those of the filtered version of reality that the model is designed to represent. Here, simple diagnostics are introduced to quantify temporal variability ...
    Request PDF

    Hidden Error Variance Theory. Part II: An Instrument That Reveals Hidden Error Variance Distributions from Ensemble Forecasts and Observations 

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 005:;page 1469
    Author(s): Bishop, Craig H.; Satterfield, Elizabeth A.; Shanley, Kevin T.
    Publisher: American Meteorological Society
    Abstract: n Part I of this study, a model of the distribution of true error variances given an ensemble variance is shown to be defined by six parameters that also determine the optimal weights for the static and flow-dependent parts ...
    Request PDF

    Accounting for Correlated Observation Error in a Dual-Formulation 4D Variational Data Assimilation System 

    Source: Monthly Weather Review:;2016:;volume( 145 ):;issue: 003:;page 1019
    Author(s): Campbell, William F.; Satterfield, Elizabeth A.; Ruston, Benjamin; Baker, Nancy L.
    Publisher: American Meteorological Society
    Abstract: ppropriate specification of the error statistics for both observational data and short-term forecasts is necessary to produce an optimal analysis. Observation error stems from instrument error, forward model error, and ...
    Request PDF

    Observation-Informed Generalized Hybrid Error Covariance Models 

    Source: Monthly Weather Review:;2018:;volume 146:;issue 011:;page 3605
    Author(s): Satterfield, Elizabeth A.; Hodyss, Daniel; Kuhl, David D.; Bishop, Craig H.
    Publisher: American Meteorological Society
    Abstract: AbstractBecause of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble-derived covariance matrix is equal to the true error covariance matrix. Here, we describe a simple and intuitively ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian