YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    A Novel Active Optimization Approach for Rapid and Efficient Design Space Exploration Using Ensemble Machine Learning 

    Source: Journal of Energy Resources Technology:;2020:;volume( 143 ):;issue: 003:;page 032307-1
    Author(s): Owoyele, Opeoluwa; Pal, Pinaki
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, a novel design optimization technique based on active learning, which involves dynamic exploration and exploitation of the design space of interest using an ensemble of machine learning algorithms, is presented. ...
    Request PDF

    An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization 

    Source: Journal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 008:;page 082305-1
    Author(s): Owoyele, Opeoluwa; Pal, Pinaki; Vidal Torreira, Alvaro
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The use of machine learning (ML)-based surrogate models is a promising technique to significantly accelerate simulation-driven design optimization of internal combustion (IC) engines, due to the high computational cost of ...
    Request PDF

    Assessment of Machine Learning Wall Modeling Approaches for Large Eddy Simulation of Gas Turbine Film Cooling Flows: An a Priori Study 

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 008:;page 81019-1
    Author(s): Kumar, Tadbhagya; Pal, Pinaki; Wu, Sicong; Nunno, A. Cody; Owoyele, Opeoluwa; Joly, Michael M.; Tretiak, Dima
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, a priori analysis of machine learning (ML) strategies is carried out with the goal of data-driven wall modeling for large eddy simulation (LES) of gas turbine film cooling flows. High-fidelity flow datasets ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian