YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-9 of 9

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Machine Learning for Real-Time Prediction of Damaging Straight-Line Convective Wind 

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 006:;page 2175
    Author(s): Lagerquist, Ryan;McGovern, Amy;Smith, Travis
    Publisher: American Meteorological Society
    Abstract: AbstractThunderstorms in the United States cause over 100 deaths and $10 billion (U.S. dollars) in damage per year, much of which is attributable to straight-line (nontornadic) wind. This paper describes a machine-learning ...
    Request PDF

    Deep Learning for Spatially Explicit Prediction of Synoptic-Scale Fronts 

    Source: Weather and Forecasting:;2019:;volume 034:;issue 004:;page 1137
    Author(s): Lagerquist, Ryan; McGovern, Amy; Gagne II, David John
    Publisher: American Meteorological Society
    Abstract: AbstractThis paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts in gridded data, followed by a novel postprocessing method that converts probability grids to objects. ...
    Request PDF

    Using Deep Learning to Nowcast the Spatial Coverage of Convection from Himawari-8 Satellite Data 

    Source: Monthly Weather Review:;2021:;volume( 149 ):;issue: 012:;page 3897
    Author(s): Lagerquist, Ryan;Stewart, Jebb Q.;Ebert-Uphoff, Imme;Kumler, Christina
    Publisher: American Meteorological Society
    Request PDF

    Creating and Evaluating Uncertainty Estimates with Neural Networks for Environmental-Science Applications 

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author(s): Haynes, Katherine; Lagerquist, Ryan; McGraw, Marie; Musgrave, Kate; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Estimating Full Longwave and Shortwave Radiative Transfer with Neural Networks of Varying Complexity 

    Source: Journal of Atmospheric and Oceanic Technology:;2023:;volume( 040 ):;issue: 011:;page 1407
    Author(s): Lagerquist, Ryan; Turner, David D.; Ebert-Uphoff, Imme; Stewart, Jebb Q.
    Publisher: American Meteorological Society
    Request PDF

    Creating and Evaluating Uncertainty Estimates with Neural Networks for Environmental-Science Applications 

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author(s): Haynes, Katherine; Lagerquist, Ryan; McGraw, Marie; Musgrave, Kate; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Using Deep Learning to Emulate and Accelerate a Radiative Transfer Model 

    Source: Journal of Atmospheric and Oceanic Technology:;2021:;volume( 038 ):;issue: 010:;page 1673
    Author(s): Lagerquist, Ryan;Turner, David;Ebert-Uphoff, Imme;Stewart, Jebb;Hagerty, Venita
    Publisher: American Meteorological Society
    Request PDF

    Using Artificial Intelligence to Improve Real-Time Decision Making for High-Impact Weather 

    Source: Bulletin of the American Meteorological Society:;2017:;volume( 098 ):;issue: 010:;page 2073
    Author(s): McGovern, Amy; Elmore, Kimberly L.; Gagne, David John; Haupt, Sue Ellen; Karstens, Christopher D.; Lagerquist, Ryan; Smith, Travis; Williams, John K.
    Publisher: American Meteorological Society
    Abstract: is paper demonstrates that modern AI techniques can aid forecasters on a wide variety of high-impact weather phenomena.
    Request PDF

    Trustworthy Artificial Intelligence for Environmental Sciences: An Innovative Approach for Summer School 

    Source: Bulletin of the American Meteorological Society:;2023:;volume( 104 ):;issue: 006:;page E1222
    Author(s): McGovern, Amy; Gagne, David John; Wirz, Christopher D.; Ebert-Uphoff, Imme; Bostrom, Ann; Rao, Yuhan; Schumacher, Andrea; Flora, Montgomery; Chase, Randy; Mamalakis, Antonios; McGraw, Marie; Lagerquist, Ryan; Redmon, Robert J.; Peterson, Taysia
    Publisher: American Meteorological Society
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Language (ISO)

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian