YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-2 of 2

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    A Data-Driven Approach for Generalizing the Laminar Kinetic Energy Model for Separation and Bypass Transition in Low- and High-Pressure Turbines 

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 009:;page 91005-1
    Author(s): Fang, Yuan; Zhao, Yaomin; Akolekar, Harshal D.; Ooi, Andrew S. H.; Sandberg, Richard D.; Pacciani, Roberto; Marconcini, Michele
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: No common laminar kinetic energy (LKE) transition model has to date been able to predict both separation-induced and bypass transition, both phenomena commonly found in low-pressure turbines and high-pressure turbines. ...
    Request PDF

    Integration of Machine Learning and Computational Fluid Dynamics to Develop Turbulence Models for Improved Low-Pressure Turbine Wake Mixing Prediction 

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 012:;page 0121001-1
    Author(s): Akolekar, Harshal D.; Zhao, Yaomin; Sandberg, Richard D.; Pacciani, Roberto
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the development of accurate turbulence closures for low-pressure turbine (LPT) wake mixing prediction by integrating a machine-learning approach based on gene expression programming (GEP), with ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian