Show simple item record

contributor authorAhmed El Refai
contributor authorMohamed-Amine Ammar
contributor authorRadhouane Masmoudi
date accessioned2017-05-08T22:25:47Z
date available2017-05-08T22:25:47Z
date copyrightJune 2015
date issued2015
identifier other44568251.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80491
description abstractThis paper presents the test results of a study on the bond behavior of basalt fiber-reinforced polymer (BFRP) bars to concrete. Thirty six concrete cylinders reinforced with BFRP bars and twelve cylinders reinforced with glass fiber-reinforced polymer (GFRP) bars were tested in direct pullout conditions. Test parameters included the FRP material (basalt and glass), the bar diameter, and the bar embedment length in concrete. Bond-slip curves of BFRP and GFRP bars revealed similar trends. BFRP bars developed average bond strength 75% of that of GFRP bars. All BFRP specimens failed in a pullout mode of failure along the interfacial surface between the outer layer of the bar and the subsequent core layers. The influence of various parameters on the overall bond performance of BFRP bars is analyzed and discussed. The well-known BPE and modified-BPE analytical models were calibrated to describe the bond-slip relationships of the bars. Test results demonstrate the promise of using the BFRP bars as an alternative to the GFRP bars in reinforcing concrete elements.
publisherAmerican Society of Civil Engineers
titleBond Performance of Basalt Fiber-Reinforced Polymer Bars to Concrete
typeJournal Paper
journal volume19
journal issue3
journal titleJournal of Composites for Construction
identifier doi10.1061/(ASCE)CC.1943-5614.0000487
treeJournal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record