Show simple item record

contributor authorLi-Chung Chao
contributor authorMiroslaw J. Skibniewski
date accessioned2017-05-08T22:20:03Z
date available2017-05-08T22:20:03Z
date copyrightMarch 1995
date issued1995
identifier other%28asce%290733-9364%281995%29121%3A1%28130%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/77953
description abstractA neural network (NN) based approach is proposed for predicting the adoption potential or acceptability of a new construction technology. The acceptability of a technology for a target operation is defined as the proportion of users that choose to use the technology in comparison to a conventional (base) technology. All existing alternative technologies for the considered operation are collected as samples for study. The performance characteristics of each sample technology are stored in a vector comprising eigenvalues determined by using the analytical hierarchy process (AHP) method, and its acceptability is determined using a poll. The obtained performance-acceptability pairs are used to train a neural network using the back-propagation algorithm. The trained network can then be used to predict the acceptability of a new technology in question, given its performance attributes. Possible information sources for training set construction and possible applications of the approach are discussed. An example estimate of the adoption prospect of a new concrete distribution system for concrete placement on a mid-rise building project is provided. Tests of the presented NN approach with simulated data show a promising result, especially when the poll size used is sufficiently large.
publisherAmerican Society of Civil Engineers
titleNeural Network Method of Estimating Construction Technology Acceptability
typeJournal Paper
journal volume121
journal issue1
journal titleJournal of Construction Engineering and Management
identifier doi10.1061/(ASCE)0733-9364(1995)121:1(130)
treeJournal of Construction Engineering and Management:;1995:;Volume ( 121 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record