Show simple item record

contributor authorLe-Chung Shiau
contributor authorShih-Yao Kuo
date accessioned2017-05-08T22:13:38Z
date available2017-05-08T22:13:38Z
date copyrightOctober 2004
date issued2004
identifier other39910221.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/74322
description abstractBy considering the total transverse displacement of a sandwich plate as the sum of the displacement due to bending of the plate and that due to shear deformation of the core, a 72 degrees of freedom high precision high order triangular-plate element is developed for the thermal postbuckling analysis of rectangular composite sandwich plates. Due to an uneven thermal expansion coefficient in the two local material directions, the buckling mode of the plate can be changed from one mode to another as the fiber orientation or aspect ratio of the plate is varied. By examining the local minimum of total potential energy of each mode, a clear picture of buckle pattern change is presented. Numerical results show that for a sandwich plate with cross-ply laminated faces, buckle pattern change may occur when the plate has a long narrow shape. However, for sandwich plates with angle-ply laminated faces, the buckling mode is dependent on the fiber orientation and aspect ratio of the plate. The effect of temperature gradient on the postbuckling behavior of the sandwich plate is limited except for angle-ply laminated sandwich plates with fiber angle greater than
publisherAmerican Society of Civil Engineers
titleThermal Postbuckling Behavior of Composite Sandwich Plates
typeJournal Paper
journal volume130
journal issue10
journal titleJournal of Engineering Mechanics
identifier doi10.1061/(ASCE)0733-9399(2004)130:10(1160)
treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record