Show simple item record

contributor authorZhijing Ou
contributor authorBaochun Chen
contributor authorKai H. Hsieh
contributor authorMarvin W. Halling
contributor authorPaul J. Barr
date accessioned2017-05-08T21:59:21Z
date available2017-05-08T21:59:21Z
date copyrightJune 2011
date issued2011
identifier other%28asce%29st%2E1943-541x%2E0000361.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/68218
description abstractIn this paper, an experimental and analytical investigation of concrete-filled steel tubular (CFST) laced columns is presented. These columns consist of four concrete-filled steel tubes that are laced together. A total of 27 experimental tests were conducted to quantify the column failure mechanism at ultimate loads. The experiments were designed to obtain the load-deflection curves. These curves were subsequently used to quantify the structural behavior for each element of the hybrid column. Experimental results indicate that the compression force in the longitudinal members dominated the failure mechanism in the CFST columns. In-plane bending occurred when member segments reached the compression failure load. The forces in the lacing members (diagonal and horizontal bracing) were found to be small and remained in the elastic range through failure. The experimental study was used to validate an analytical parametric study. The analytical study showed that increasing slenderness ratios and eccentricities reduced the ultimate load capacity. Additionally, finite-element analyses of CFST columns based on four in situ structures were performed to determine the ultimate load-carrying capacity and were subsequently compared to several building codes. On the basis of the analytical results, a new methodology for calculating the ultimate load-carrying capacity is proposed. This purposed methodology is compared with five different building codes to quantify the increased accuracy.
publisherAmerican Society of Civil Engineers
titleExperimental and Analytical Investigation of Concrete Filled Steel Tubular Columns
typeJournal Paper
journal volume137
journal issue6
journal titleJournal of Structural Engineering
identifier doi10.1061/(ASCE)ST.1943-541X.0000320
treeJournal of Structural Engineering:;2011:;Volume ( 137 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record