Show simple item record

contributor authorJulie Ann Hartell
contributor authorAndrew J. Boyd
contributor authorChristopher C. Ferraro
date accessioned2017-05-08T21:55:22Z
date available2017-05-08T21:55:22Z
date copyrightMay 2011
date issued2011
identifier other%28asce%29mt%2E1943-5533%2E0000239.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/66558
description abstractTraditionally, the extent of sulfate attack is qualified through visual rating or quantified by the percent expansion of slender bars completely submerged in sulfate solution. There are currently no standardized test methods that take into account the change in engineering properties because of deleterious mechanisms. Moreover, the exposure regime used to evaluate sulfate attack, complete immersion, is not typically representative of that encountered in the field. For these reasons, the objective of the research presented herein is to quantify the degree of sodium sulfate attack through the degradation of mechanical properties, specifically the compressive and splitting tensile load capacities of standard cylindrical specimens. A novel exposure regime is utilized wherein the specimens are only partially submerged in 5% sodium sulfate solution, creating an evaporation front similar to that of field exposure. It was found that the portion submerged in sulfate solution, although visually pristine, was the weaker portion of the cylinder for both mechanical tests, even though the other half showed extensive signs of surface disintegration caused by salt crystallization.
publisherAmerican Society of Civil Engineers
titleSulfate Attack on Concrete: Effect of Partial Immersion
typeJournal Paper
journal volume23
journal issue5
journal titleJournal of Materials in Civil Engineering
identifier doi10.1061/(ASCE)MT.1943-5533.0000208
treeJournal of Materials in Civil Engineering:;2011:;Volume ( 023 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record