Show simple item record

contributor authorF. E. Hachem
contributor authorA. J. Schleiss
date accessioned2017-05-08T21:51:15Z
date available2017-05-08T21:51:15Z
date copyrightJanuary 2012
date issued2012
identifier other%28asce%29hy%2E1943-7900%2E0000505.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/64328
description abstractA new monitoring approach for detecting, locating, and quantifying structurally weak reaches of steel-lined pressure tunnels and shafts is presented. These reaches arise from local deterioration of the backfill concrete and the rock mass surrounding the liner. The change of wave speed generated by the weakening of the radial-liner supports creates reflection boundaries for the incident pressure waves. The monitoring approach is based on the generation of transient pressure with a steep wave front and the analysis of the reflected pressure signals using the fast Fourier transform and wavelet decomposition methods. Laboratory experiments have been carried out to validate the monitoring technique. The multilayer system (steel-concrete-rock) of the pressurized shafts and tunnels is modeled by a one-layer system of the test pipe. This latter was divided into several reaches having different wall stiffnesses. Different longitudinal placements of a steel, aluminum, and PVC pipe reach were tested to validate the identification method of the weak section.
publisherAmerican Society of Civil Engineers
titleDetection of Local Wall Stiffness Drop in Steel-Lined Pressure Tunnels and Shafts of Hydroelectric Power Plants Using Steep Pressure Wave Excitation and Wavelet Decomposition
typeJournal Paper
journal volume138
journal issue1
journal titleJournal of Hydraulic Engineering
identifier doi10.1061/(ASCE)HY.1943-7900.0000478
treeJournal of Hydraulic Engineering:;2012:;Volume ( 138 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record