Show simple item record

contributor authorJiri Plesek
contributor authorHeidi P. Feigenbaum
contributor authorYannis F. Dafalias
date accessioned2017-05-08T21:43:13Z
date available2017-05-08T21:43:13Z
date copyrightApril 2010
date issued2010
identifier other%28asce%29em%2E1943-7889%2E0000087.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60527
description abstractThe present paper examines the convexity of the yield surface in the directional distortional hardening models by Feigenbaum and Dafalias. In these models anisotropy develops through kinematic and directional distortional hardening, supplemented by the classical isotropic hardening, and the associative flow rule is used. However, the issue of convexity, which naturally arises due to the distortion of the yield surface, was not fully addressed. The present paper derives the necessary and sufficient conditions to ensure convexity of the yield surface for the simpler Feigenbaum and Dafalias models, but it is not as straightforward to derive corresponding conditions for convexity of the Feigenbaum and Dafalias model version which contains an evolving fourth-order tensor. In this case convexity will be addressed first in general and then at the limit state for which simple restrictions on the material constants to ensure convexity are derived. Numerical examples will show that some of the yield surfaces simulated in the original Feigenbaum and Dafalias publication will not stay convex if loaded beyond what was done in these publications. Therefore the material constants for these cases are recalibrated based on the derived relations for satisfaction of the convexity requirement, and the fitting of the yield surfaces is repeated with the new set of constants and compared with the previous case.
publisherAmerican Society of Civil Engineers
titleConvexity of Yield Surface with Directional Distortional Hardening Rules
typeJournal Paper
journal volume136
journal issue4
journal titleJournal of Engineering Mechanics
identifier doi10.1061/(ASCE)EM.1943-7889.0000077
treeJournal of Engineering Mechanics:;2010:;Volume ( 136 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record