Show simple item record

contributor authorAgustí Pérez-Foguet
contributor authorEva Casoni
contributor authorAntonio Huerta
date accessioned2017-05-08T21:42:27Z
date available2017-05-08T21:42:27Z
date copyrightMay 2013
date issued2013
identifier other%28asce%29ee%2E1943-7870%2E0000673.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60113
description abstractThe homogeneous surface diffusion model (HSDM) is widely used for adsorption modeling of aqueous solutions. The Biot number is usually used to characterize model behavior. However, some limitations of this characterization have been reported recently, and the Stanton number has been proposed as a complement to be considered. In this work, a detailed dimensionless analysis of HSDM is presented and limit behaviors of the model are characterized, confirming but extending previous results. An accurate and efficient numerical solver is used for these purposes. The intraparticle diffusion equation is reduced to a system of two ordinary differential equations, the transport–reaction equation is discretized by using a discontinuous Galerkin method, and the overall system evolution is integrated with a time-marching scheme. This approach facilitates the simulation of HSDM with a wide range of dimensionless numbers and with a correct treatment of shocks, which appear with nonlinear adsorption isotherms and with large Biot numbers and small surface diffusivity modulus. The approach is applied to simulate the breakthrough curves of granular ferric hydroxide. Published experimental data is adequately simulated.
publisherAmerican Society of Civil Engineers
titleDimensionless Analysis of HSDM and Application to Simulation of Breakthrough Curves of Highly Adsorbent Porous Media
typeJournal Paper
journal volume139
journal issue5
journal titleJournal of Environmental Engineering
identifier doi10.1061/(ASCE)EE.1943-7870.0000665
treeJournal of Environmental Engineering:;2013:;Volume ( 139 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record